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Abstract 
Back pressure-based adaptive routing algorithms where each packet is routed along a possibly different 

pathhave been extensively studied in the literature. However, suchalgorithms typically result in poor delay 

performance and involvehigh implementation complexity. In this paper, we develop anew adaptive routing 

algorithm built upon the widely-studiedback-pressure algorithm. We decouple the routing and 

schedulingcomponents of the algorithm by designing a probabilistic routingtable which is used to route packets 

to per-destination queues.The scheduling decisions in the case of wireless networks aremade using counters 

called shadow queues. The results arealso extended to the case of networks which employ simpleforms of 

network coding. In that case, our algorithm provides alow-complexity solution to optimally exploit the routing-

codingtrade-off. 

 

I. INTRODUCTION 
The back-pressure algorithm introduced in [25] 

has beenwidely studied in the literature. While the 

ideas behindscheduling using the weights suggested 

in that paper have beensuccessful in practice in base 

stations and routers, the adaptiverouting algorithm is 

rarely used. The main reason for this isthat the 

routing algorithm can lead to poor delay 

performancedue to routing loops. Additionally, the 

implementation of theback-pressure algorithm 

requires each node to maintain predestination queues 

which can be burdensome for a wirelineor wireless 

router. Motivated by these considerations, we re-

examine the back-pressure routing algorithm in the 

paper anddesign a new algorithm which has much 

superior performanceand low implementation 

complexity. 

Prior work in this area [22] has recognized the 

importanceof doing shortest-path routing to improve 

delay performanceand modified the back-pressure 

algorithm to bias it towardstaking shortest-hop 

routes. A part of our algorithm has similarmotivating 

ideas, but we do much more. In addition to 

provablythroughput-optimal routing which minimizes 

the numberof hops taken by packets in the network, 

we decouple routingand scheduling in the network 

through the use of probabilisticrouting tables and the 

so-called shadow queues. The min-hoprouting idea 

was studied first in a conference paper [7] andshadow 

queues were introduced in [6], but the key step 

ofdecoupling the routing and scheduling which leads 

to bothdramatic delay reduction and the use of per-

next-hop queueingis original here. The min-hop 

routing idea is also studied in[26] but their solution  

 

 

requires even more queues than theoriginal back-

pressure algorithm. 

We also consider networks where simple 

forms of networkcoding is allowed [17]. In such 

networks, a relay between twoother nodes XORs 

packets and broadcast them to decrease thenumber of 

transmissions. There is a trade-off between 

choosinglong routes to possibly increase network 

coding opportunities(see the notion of reverse 

carpooling in [10]) and choosingshort routes to 

reduce resource usage. Our adaptive routingalgorithm 

can be modified to automatically realize this trade-

offwith good delay performance. In addition, network 

codingrequires each node to maintain more queues 

[15] and ourrouting solution at least reduces the 

number of queues to bemaintained for routing 

purposes, thus partially mitigating theproblem. An 

offline algorithm for optimally computing therouting-

coding trade-off was proposed in [23]. Our 

optimizationformulation bears similarities to this 

work but our mainfocus is on designing low-delay 

on-line algorithms. Backpressuresolutions to network 

coding problems have also beenstudied in [14], [11], 

[8], but the adaptive routing-codingtrade-off solution 

that we propose here has not been studiedpreviously. 

We summarize our main results below. 

_ Using the concept of shadow queues, we decouple 

routingand scheduling. A shadow network is used to 

update aprobabilistic routing table which packets use 

upon arrivalat a node. The back-pressure-based 

scheduling algorithmis used to serve FIFO queues 

over each link. 

_ The routing algorithm is designed to minimize the 

averagenumber of hops used by packets in the 

network.This idea, along with the scheduling/routing 
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decoupling,leads to delay reduction compared with 

the traditionalback-pressure algorithm. 

_ Each node has to maintain counters, called 

shadowqueues, per destination. This is very similar to 

the idea ofmaintaining a routing table per destination. 

But the realqueues at each node are per-next-hop 

queues in the caseof networks which do not employ 

network coding. Whennetwork coding is employed, 

per-previous-hop queuesmay also be necessary but 

this is a requirement imposedby network coding, not 

by our algorithm. 

_ The algorithm can be applied to wireline and 

wirelessnetworks. Extensive simulations show 

dramatic improvementin delay performance 

compared to the back-pressurealgorithm. 

The rest of the paper is organized as follows. We 

presentthe network model in Section II. In Section III 

and IV, the traditionalback-pressure algorithm and its 

modified version areintroduced. We develop our 

adaptive routing and scheduling algorithm for 

wireline and wireless networks with and without 

network coding in Section V, VI and VII. In Section 

VIII, thesimulation results are presented. We 

conclude our paper inSection IX. 

 

II. THE NETWORK MODEL 
We consider a multi-hop wire line or wireless 

networkrepresented by a directed graph G = (N;L); 

where N is theset of nodes and L is the set of directed 

links. A directed linkthat can transmit packets from 

node n to node j is denotedby (nj) 2 L: We assume 

that time is slotted and define thelink capacity cnj to 

be the maximum number of packets thatlink (nj) can 

transmit in one time slot. 

Let F be the set of flows that share the network. 

Eachflow is associated with a source node and a 

destination node,but no route is specified between 

these nodes. This meansthat the route can be quite 

different for packets of the sameflow. Let b(f) and 

e(f) be source and destination nodes,respectively, of 

flow f: Let xf be the rate (packets/slot) atwhich 

packets are generated by flow f: If the demand onthe 

network, i.e., the set of flow rates, can be satisfied 

bythe available capacity, there must exist a routing 

algorithmand a scheduling algorithm such that the 

link rates lie inthe capacity region. To precisely state 

this condition, wedefine _dnj to be the rate allocated 

on link (nj) to packets destined for node d: Thus, the 

total rate allocated to all flowsat link (nj) is given by 

 Clearly, for thenetwork to be 

able to meet the traffic demand, we should have: 

 
whereA_ is the capacity region of the network 

for 1-hop traffic.The capacity region of the network 

for 1-hop traffic containsall sets of rates that are 

stabilizable by some kind of schedulingpolicy 

assuming all traffics are 1-hop traffic. As a special 

case,in the wire line network, the constraints are: 

 
As opposed to _; let _ denote the capacity region 

of the multihopnetwork, i.e., for any set of flows fxf 

gf2F 2 _; thereexists some routing and scheduling 

algorithms that stabilizethe network. 

In addition, a flow conservation constraint must 

be satisfiedat each node, i.e., the total rate at which 

traffic can possiblyarrive at each node destined to d 

must be less than or equal tothe total rate at which 

traffic can depart from the node destinedto d : 

        (1) 

where I denotes the indicator function. Given a 

set of arrivalrates x = fxf gf2F that can be 

accommodated by the network,one version of the 

multi-commodity flow problem is to findthe traffic 

splits _dnj such that (1) is satisfied. However, 

findingthe appropriate traffic split is computationally 

prohibitive andrequires knowledge of the arrival 

rates. The back-pressurealgorithm to be described 

next is an adaptive solution to themulti-commodity 

flow problem. 

 

III. THROUGHPUT-OPTIMAL BACK-

PRESSUREALGORITHM AND ITS 

LIMITATIONS 
The back-pressure algorithm was first described 

in [25]in the context of wireless networks and 

independently discoveredlater in [2] as a low-

complexity solution to certainmulti-commodity flow 

problems. This algorithm combinesthe scheduling 

and routing functions together. While manyvariations 

of this basic algorithm have been studied, 

theyprimarily focus on maximizing throughput and 

do not considerQoS performance. Our algorithm uses 

some of these ideasas building blocks and therefore, 

we first describe the basicalgorithm, its drawbacks 

and some prior solutions. 

The algorithm maintains a queue for each 

destination at eachnode. Since the number of 

destinations can be as large as thenumber of nodes, 

this per-destination queueing requirement can be 

quite large for practical implementation in a 

network.At each link, the algorithm assigns a weight 

to each possibledestination which is called back-

pressure. Define the back pressureat link (nj) for 

destination d at slot t to be 

 
where Qnd[t] denotes the number of packets at node 

n destinedfor node d at the beginning of time slot t: 
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Under this notation,Qnn[t] = 0; 8t: Assign a weight 

wnj to each link (nj); wherewnj is defined to be the 

maximum back-pressure over allpossible 

destinations, i.e., 

 
Let d_nj be the destination which has the 

maximum weight onlink (nj); 

                     (2) 

If there are ties in the weights, they can be 

broken arbitrarily.Packets belonging to destination 

d_nj[t] are scheduled fortransmission over the 

activated link (nj): A schedule is a set oflinks that can 

be activated simultaneously without interferingwith 

each other. Let � denote the set of all schedules. 

Theback-pressure algorithm finds an optimal 

schedule __[t] whichis derived from the optimization 

problem: 

           (3) 

Specially, if the capacity of every link has the 

same value,the chosen schedule maximizes the sum 

of weights in anyschedule.At time t; for each 

activated link (nj) 2 __[t] we removecnj packets from 

Qnd_nj[t] if possible, and transmit thosepackets to 

Qjd_nj[t]: We assume that the departures occur firstin 

a time slot, and external arrivals and packets 

transmittedover a link (nj) in a particular time slot are 

available to node j at the next time slot. Thus the 

evolution of the queue Qnd[t]is as follows: 

         (4) 

where ^_nj[t] is the number of packets 

transmitted over link(nj) in time slot t and af [t] is the 

number of packets generatedby flow f at time t: It has 

been shown in [25] that the backpressurealgorithm 

maximizes the throughput of the network. 

A key feature of the back-pressure algorithm is 

that packetsmay not be transferred over a link unless 

the back-pressureover a link is non-negative and the 

link is included in thepicked schedule. This feature 

prevents further congestingnodes that are already 

congested, thus providing the adaptivelyof the 

algorithm. Notice that because all links can be 

activatedwithout interfering with each other in the 

wire line network, �is the set of all links. Thus the 

back-pressure algorithm can belocalized at each node 

and operated in a distributed mannerin the wire line 

network.The back-pressure algorithm has several 

disadvantages thatprohibit practical implementation: 

_ The back-pressure algorithm requires maintaining 

queuesfor each potential destination at each node. 

This queuemanagement requirement could be a 

prohibitive overheadfor a large network. 

_ The back-pressure algorithm is an adaptive routing 

algorithmwhich explores the network resources and 

adaptsto different levels of traffic intensity. However 

it mightalso lead to high delays because it may 

choose long pathsunnecessarily. High delays are also 

a result of maintaininga large number of queues at 

each node. Only one queuecan be scheduled at a 

time, and the unused service couldfurther contribute 

to high latency. 

In this paper, we address the high delay and 

queueingcomplexity issues. The computational 

complexity issue forwireless networks is not 

addressed here. We simply use therecently studied 

greedy maximal scheduling (GMS) algorithm.Here 

we call it the largest-weight-first algorithm, in 

short,LWF algorithm. LWF algorithm requires the 

same queue structurethat the back-pressure algorithm 

uses. It also calculates theback-pressure at each link 

using the same way. The differencebetween these 

two algorithms only lies in the methods to pick 

aschedule. Let S denote the set of all links initially. 

Let Nb(l) bethe set of links within the interference 

range of link l includingl itself. At each time slot, the 

LWF algorithm picks a link lwith the maximum 

weight first, and removes links within theinterference 

range of link l from S; i.e., S = SnNb(l); then itpicks 

the link with the maximum weight in the updated set 

S;and so forth. It should be noticed that LWF 

algorithm reducesthe computational complexity with 

a price of the reductionof the network capacity 

region. The LWF algorithm wherethe weights are 

queue lengths (not back-pressures) has 

beenextensively studied in [9], [16], [4], [18], [19]. 

While these studies indicate that there may be 

reduction in throughputdue to LWF in certain special 

network topologies, it seemsto perform well in 

simulations and so we adopt it here. 

In the rest of the paper, we present our main 

results whicheliminate many of the problems 

associated with the backpressurealgorithm. 

 

IV. MIN-RESOURCE ROUTING 

USING BACK-

PRESSUREALGORITHM 
As mentioned in Section III, the back-pressure 

algorithmexplores all paths in the network and as a 

result may choosepaths which are unnecessarily long 

which may even containloops, thus leading to poor 

performance. We address thisproblem by introducing 

a cost function which measures thetotal amount of 

resources used by all flows in the network.Specially, 

we add up traffic loads on all links in the networkand 

use this as our cost function. The goal then is to 

minimizethis cost subject to network capacity 

constraints.Given a set of packet arrival rates that lie 

within the capacityregion, our goal is to find the 
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routes for flows so that we use asfew resources as 

possible in the network. Thus, we formulatethe 

following optimization problem: 

 
We now show how a modification of the back-

pressurealgorithm can be used to solve this min-

esource routingproblem. (Note that similar 

approaches have been used in[20], [21], [24], [12], 

[13] to solve related resource allocationproblems.) 

Let fqndg be the Lagrange multipliers 

corresponding to theflow conservation constraints in 

problem (5). Appending theseconstraints to the 

objective, we get 

 
If the Lagrange multipliers are known, then the 

optimal _ canbe found by solving 

 
wherewnj = maxd(qnd�qjd�1): The form of the 

constraintsin (5) suggests the following update 

algorithm to compute 

 
where 1M is a step-size parameter. Notice that 

Mqnd[t] looksvery much like a queue update 

equation, except for the factthat arrivals into Qnd 

from other links may be smaller than_dln when Qld 

does not have enough packets. This suggeststhe 

following algorithm. 

Min-resource routing by back-pressure: At time 

slot t; 

_ Each node n maintains a separate queue of packets 

foreach destination d; its length is denoted Qnd[t]. 

Each linkis assigned a weight 

      (8) 

where M > 0 is a parameter. 

_ Scheduling/routing rule: 

            (9) 

_ For each activated link (nj) 2 __[t] we remove 

cnjpackets from Qnd_nj[t] if possible, and transmit 

thosepackets to Qjd_nj[t]; where d_nj[t] achieves the 

maximumin (8). 

Note that the above algorithm does not change if 

we replacethe weights in (8) by the following, re-

scaled ones: 

     (10) 

and therefore, compared with the traditional back-

pressurescheduling/routing, the only difference is that 

each link weightis equal to the maximum differential 

backlog minus parameterM. (M = 0 reverts the 

algorithm to the traditional one.) Forsimplicity, we 

call this algorithm M-back-pressure algorithm.The 

performance of the stationary process which is 

“produced”by the algorithm with fixed parameter M 

is withino(1) of the optimal as M goes to 1 

(analogous to the proofsin [21], [24]; see also the 

related proof in [12], [13]): 

 
where __ is an optimal solution to (5).  

Although M-back-pressure algorithm could 

reduce the delay by forcing flows to go through 

shorter routes, simulations indicate a significant 

problem with the basic algorithm presented above. A 

link can be scheduled only if the backpressure of at 

least one destination is greater than or equal to M: 

Thus, at light to moderate traffic loads, the delays 

could be high since the back-pressure may not build 

up sufficiently fast. In order to overcome all these 

adverse issues, we develop a new routing algorithm 

in the following section. The solution also simplifies 

the queuing data structure to be maintained at each 

node. 

 

V. PARN: PACKET-BY-PACKET 

ADAPTIVE ROUTING AND 

SCHEDULING ALGORITHM FOR 

NETWORKS 
In this section, we present our adaptive routing 

and scheduling algorithm. We will call it PARN 

(Packet-by-Packet Adaptive Routing for Networks) 

for ease for repeated reference later. First, we 

introduce the queue structure that is used in PARN.  

In the traditional back-pressure algorithm, each 

node n has to maintain a queue qnd for each 

destination d: Let jN j and jDj denote the number of 

nodes and the number of destinations in the network, 

respectively. Each node maintains jDj queues. 

Generally, each pair of nodes can communicate along 

a path connecting them. Thus, the number of queues 
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maintained at each node can be as high as one less 

than the number of nodes in the network, i.e., jDj=jN 

j � 1: 

Instead of keeping a queue for every destination, 

each node n maintains a queue qnj for every 

neighbour j; which is called a real queue. Notice that 

real queues are per-neighbour queues. Let Jn denote 

the number of neighbours of node n; and let Jmax = 

maxnJn: The number of queues at each node is no 

greater than Jmax: Generally, Jmax is much smaller 

than jN j: Thus, the number of queues at each node is 

much smaller compared with the case using the 

traditional back-pressure algorithm.  

In additional to real queues, each node n also 

maintains a counter, which is called shadow queue, 

pnd for each destination d: Unlike the real queues, 

counters are much easier to maintain even if the 

number of counters at each node grows linearly with 

the size of the network. A back-pressure algorithm 

run on the shadow queues is used to decide which 

links to activate. The statistics of the link activation 

are further used to route packets to the per-next-hop 

neighbour queues mentioned earlier. The details are 

explained next.  

 

A. Shadow Queue Algorithm – M-back-pressure 

Algorithm. 

The shadow queues are updated based on the 

movement of fictitious entities called shadow packets 

in the network. The movement of the fictitious 

packets can be thought of as an exchange of control 

messages for the purposes of routing and schedule. 

Just like real packets, shadow packets arrive from 

outside the network and eventually exit the network. 

The external shadow packet arrivals are general as 

follows: when an exogenous packet arrives at node n 

to the destination d; the shadow queue pnd is 

incremented by 1; and is further incremented by 1 

with probability " in addition. Thus, if the arrival rate 

of a flow f is xf ; then the flow generates “shadow 

traffic” at a rate xf (1 + "): In words, the incoming 

shadow traffic in the network is (1 + ") times of the 

incoming real traffic.  

The back-pressure for destination d on link (nj) 

is taken to Be 

 
where M is a properly chosen parameter. The 

choice of M will be discussed in the simulations 

section.  

The evolution of the shadow queue pnd[t] is 

    (11) 

where ^_nj[t] is the number of shadow packets 

transmitted over link (nj) in time slot t, d_ nj[t] is the 

destination that has the maximum weight on link (nj); 

and ^af [t] is the number of shadow packets 

generated by flow f at time t: The number of shadow 

packets scheduled over the links at each time instant 

is determined by the back-pressure algorithm in 

equation (9).  

From the above description, it should be clear 

that the shadow algorithm is the same as the 

traditional back-pressure algorithm, except that it 

operates on the shadow queueing system with an 

arrival rate slightly larger than the real external 

arrival rate of packets. Note the shadow queues do 

not involve any queueing data structure at each node; 

there are no packets to maintain in a FIFO order in 

each queue. The shadow queue is simply a counter 

which is incremented by 1 upon a shadow packet 

arrival and decremented by 1 upon a departure.  

The back-pressure algorithm run on the shadow 

queues is used to activate the links. In other words, if 

__ nj = 1 in (9), then link (nj) is activated and packets 

are served from the real queue at the link in a first-in, 

first-out fashion. This is, of course, very different 

from the traditional back-pressure algorithm where a 

link is activated to serve packets to a particular 

destination. Thus, we have to develop a routing 

scheme that assigns packets arriving to a node to a 

particular next-hop neighbor so that the system 

remains stable. We design such an algorithm next.  

 

B. Adaptive Routing Algorithms 

Now we discuss how a packet is routed once it 

arrives at a node. Let us define a variable _d nj[t] to 

be the number of shadow packets “transferred” from 

node n to node j for destination d during time slot t 

by the shadow queue algorithm. Let us denote by __d 

nj the expected value of _d nj[t], when the shadow 

queueingprocess is in a stationary regime; let ^_d 

nj[t] denote an estimate of __d nj, calculated at time 

t. (In the simulations we use the exponential 

averaging, as specified in the next section.)  

At each time slot, the following sequence of 

operations occurs at each node n: A packet arriving at 

node n for destination d is inserted in the real queue 

qnj for next-hop neighbor j with probability  

        (12) 

Thus, the estimates ^_d nj[t] are used to perform 

routing operations: in today’s routers, based on the 

destination of a packet, a packet is routed to its next 

hop based on routing table entries. Instead, here, the 

__’s are used to probabilistically choose the next hop 

for a packet. Packets waiting at link (nj) are 

transmitted over the link when that link is scheduled 

(See Figure 1). 
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Fig. 1. Probabilistic splitting algorithm in Node n 

 

The first question that one must ask about the 

above algorithm is whether it is stable if the packet 

arrival rates from flows are within the capacity region 

of the multi-hop network. This is a difficult question, 

in general. Since the shadow queues are positive 

recurrent, “good” estimates ^_d nj[t] can be 

maintained by simple averaging (e.g. as specified in 

the next section), and therefore the probabilities in 

(12) will stay close to their “ideal” values 

 
The following theorem asserts that the real 

queues are stable if Pdnj are fixed at _ Pdnj:  

Theorem 1: Suppose, Pdnj[t] _ _ Pdnj. Assume 

that there exists a delta such that fxf (1 + _ + _)g lies 

in T. Let af [t] be the number of packets arriving 

from flow f at time slot t; with E(af [t]) = xf and E(af 

[t]) < 1: Assume that the arrival process is 

independent across time slots and flows (this 

assumption can be considerably relaxed). Then, the 

Markov chain, jointly describing the evolution of 

shadow queues and real FIFO queues (whose state 

include the destination of the real packet in each 

position of each FIFO queue), is positive recurrent. 

 

Proof: The key ideas behind the proof are outlined. 

The details are similar to the proof in [5] and are 

omitted.  

_ The average rate at which packets arrive to link (nj) 

is strictly smaller than the capacity allocated to the 

link by the shadow process if " > 0. (This fact is 

verified in Appendix A.) 

_ It follows that the fluid limit of the real-queue 

process is same as that of the networks in [3]. Such 

fluid limit is stable [3], which implies the stability of 

our process as well. 

 

VI. IMPLEMENTATION DETAILS 
The algorithm presented in the previous section 

ensures that the queue lengths are stable. In this 

section, we discuss a number of enhancements to the 

basic algorithm to improve performance. 

 

A. Exponential Averaging 

To compute ^_d nj[t] we use the following 

iterative exponential averaging algorithm: 

   (13) 

where 0 < _ < 1: 

 

B. Token Bucket Algorithm 

Computing the average shadow rate ^_d nj[t] and 

generating random numbers for routing packets may 

impose a computational overhead of routers which 

should be avoided if possible. Thus, as an alternative, 

we suggest the following simple algorithm. At each 

node n; for each next-hop neighbor j and each 

destination d; maintain a token bucket rdnj: Consider 

the shadow traffic as a guidance of the real traffic, 

with tokens removed as shadow packets traverse the 

link. In detail, the token bucket is decremented by _d 

nj[t] in each time slot, but cannot go below the lower 

bound 0:  

 

When rd we say that 

tokens (associated with 

bucket rdnj) are “wasted” in slot t. Upon a packet 

arrival at node n for destination d; find the token 

bucket rdnj_ which has the smallest number of tokens 

(the minimization is over next-hop neighbors j), 

breaking ties arbitrarily, add the packet to the 

corresponding real queue qnj_ and add one token to 

the corresponding bucket: 

                        (14) 

To explain how this algorithm works, denote by 

__d nj the average value of _d nj[t] (in stationary 

regime), and by _dn the average rate at which real 

packets for destination d arrive at node n. Due to the 

fact that real traffic is injected by each source at the 

rate strictly less than the shadow traffic, we have  

                                             (15) 

For a single-node network, (15) just means that 

arrival rate is less than available capacity. More 

generally, it is an assumption that needs to be proved. 

However, here our goal is to provide an intuition 

behind the token bucket algorithm, so we simply 

assume (15). Condition (15) guarantees that the token 

processes are stable (that is, roughly, they cannot 

runaway to infinity) since the total arrival rate to the 

token buckets at a node is less than the total service 

rate and the arrivals employ a join-the-shortest-queue 
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discipline. Moreover, since rdnj[t] are random 

processes, the token buckets will “hit 0” in a non-

zero fraction of time slots, except in some degenerate 

cases; this in turn means that the arrival rate of 

packets at the token bucket must be less than the 

token generation rate:  

                                                  (16) 

where _d nj is the actual rate at which packets 

arriving at n and destined for d are routed along link 

(nj). Inequality (16) thus describes the idea of the 

algorithm.  

Ideally, in addition to (16), we would like to 

have the ratios _d nj=__d nj to be equal across all j, 

i.e., the real packet arrival rates at the outgoing links 

of a node should be proportional to the shadow 

service rates. It is not difficult to see that if " is very 

small, the proportion will be close to ideal. In 

general, the token-based algorithm does not 

guarantee that, that is why it is an approximation.  

Also, to ensure implementation correctness, 

instead of (14), we use 

  (17) 

i.e., the value of rdnj_ [t] is not allowed to go 

above some relatively large value B, which is a 

parameter of the order of O(1=_). Under “normal 

circumstances”, rdnj_ [t] “hitting” ceiling B is a rare 

event, occurring due to the process randomness. The 

main purpose of having the upper bound B is to 

detect serious anomalies when, for whatever reason, 

the condition (15) “breaks” for prolonged periods of 

time – such situation is detected when any rdnj_ [t] 

hits the upper bound B frequently.  

 

C. Extra Link Activation 

Under the shadow back-pressure algorithm, only 

links with back-pressure greater than or equal to M 

can be activated. The stability theory ensures that this 

is sufficient to render the real queues. On the other 

hand, the delay performance can still be 

unacceptable. Recall that the parameter M was 

introduced to discourage the use of unnecessarily 

long paths. However, under light and moderate traffic 

loads, the shadow back-pressure at a link may be 

frequently less than M, and thus, packets at such links 

may have to wait a long time before they are 

processed. One way to remedy the situation is to 

activate additional links beyond those activated by 

the shadow back-pressure algorithm.  

The basic idea is as follows: in each time slot, 

first run the shadow back-pressure algorithm. Then, 

add additional links to make the schedule maximal. If 

the extra activation procedure depends only on the 

state of shadow queues (but beyond that, can be 

random and/or arbitrarily complex), then the stability 

result of Theorem 1 still holds (with essentially same 

proof). Informally, the stability prevails, because the 

shadow algorithm alone provides sufficient average 

throughput on each link, and adding extra capacity 

“does not hurt”; thus, with such extra activation, a 

certain degree of “decoupling” between routing 

(totally controlled by shadow queues) and scheduling 

(also controlled by shadow queues, but not 

completely) is achieved.  

For example, in the case of wireline networks, by 

the above arguments, all links can be activated all the 

time. The shadow routing algorithm ensures that the 

arrival rate at each link is less than its capacity. In 

this case the complete decoupling of routing and 

scheduling occurs.  

In practice, activating extra links which have 

large queue backlogs leads to better performance than 

activating an arbitrary set of extra links. However, in 

this case, the extra activation procedure depends on 

the state of real queues which makes the issue of 

validity of an analog of Theorem 1 much more 

subtle. We believe that the argument in this 

subsection provides a good motivation for our 

algorithm, which is confirmed by simulations. 

 

D. The Choice of the Parameter " 

From basic queueing theory, we expect the delay 

at each link to be inversely proportional to the mean 

capacity minus the arrival rate at the link. In a 

wireless network, the capacity at a link is determined 

by the shadow scheduling algorithm. This capacity is 

guaranteed to be at least equal to the shadow arrival 

rate. The arrival rate of real packets is of course 

smaller. Thus, the difference between the link 

capacity and arrival rate could be proportional to 

epsilon. Thus, epsilon should be sufficiently large to 

ensure small delays while it should be sufficiently 

small to ensure that the capacity region is not 

diminished significantly. In our simulations, we 

found that choosing " = 0:1 provides a good tradeoff 

between delay and network throughput.  

In the case of wireline networks, recall from the 

previous subsection that all links are activated. 

Therefore, the parameter epsilon plays no role here. 

 

VII. EXTENSION TO THE NETWORK 

CODING CASE 
In this section, we extend our approach to 

consider networks where network coding is used to 

improve throughput. We consider a simple form of 

network coding illustrated in Figure 2. When i and j 

each have a packet to send to the other through an 

intermediate relay n, traditional transmission requires 

the following set of transmissions: send a packet a 

from ito n, then n to j, followed by j to n and n to i. 

Instead, using network coding, one can first send 

from ito n, then j to n, XOR the two packets and 

broadcast the XORed packet from n to both i and j. 

This form of network coding reduces the number of 

transmissions from four to three. However, the 
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network coding can only improve throughput only if 

such coding opportunities are available in the 

network. Routing plays an important role in 

determining whether such opportunities exist. In this 

section, we design an algorithm to automatically find 

the right tradeoff between using possibly long routes 

to provide network coding opportunities and the 

delay incurred by using long routes.  

 
Fig. 2. Network coding opportunity 

 

A. System Model 

We still consider the wireless network 

represented by the graph G = (N;L): Let xf be the rate 

(packets/slot) at which packets are generated by flow 

f: To facilitate network coding, each node must not 

only keep track of the destination of the packet, but 

also remember the node from which a packet was 

received. Let _dl nj be the rate at which packets 

received from either node l or flow l, destined for 

node d, are scheduled over link (nj). Note that, for 

compactness of notation, we allow l in the definition 

of _dl nj to denote either a flow or a node. We 

assume _dl nj is zero when such a transmission is not 

feasible, i.e., when n is not the source node or d is not 

the destination node of flow l, or if (ln) or (nj) is not 

in L. At node n; the network coding scheme may 

generate a coded packet by “XORing” two packets 

received from previous-hop nodes l and j destined for 

the destination nodes d and d0 respectively, and 

broadcast the coded packet to nodes j and l: Let 

_d;d0njjl denote the rate at which coded packets can 

be transferred from node n to nodes j and l destined 

for nodes d and d0; respectively. Notice that, due to 

symmetry, the following equality holds _d;d0 njjl = 

_d0;d njlj : Assume _d;d0 njjl to be zero if at least 

one of (nl); (ln); (nj) and (jn) doesn’t belong to L: 

Note that _dl nj = 0 when d = l or d = n; and _d;d0 

njjl = 0 when d = n or d0 = n:  

There are two kinds of transmissions in our 

network model: point-to-point transmissions and 

broadcast transmissions. The total point-to-point rate 

at which packets received externally or from a 

previous-hop node are scheduled on link (nj) and 

destined to d is denoted by  

 
and the total broadcast rate at which packets 

scheduled on link (nj) destined to d is denoted by  

 

The total point-to-point rate on link (nj) is 

denoted by  

 
and the total broadcast rate at which packets are 

broadcast from node n to nodes j and l is denoted by  

 
Let _ be the set of rates including all point-to-

point transmissions and broadcast transmissions, i.e., 

 
The multi-hop traffic should also satisfy the flow 

conservation constraints. Flow conservation 

constraints: For each node n; each neighbour j; and 

each destination d; we have  

    (18) 

where the left-hand side denotes the total 

incoming traffic rate at link nj destined to d; and the 

right-hand side denotes the total outgoing traffic rate 

from link nj destined to d: For each node n and each 

destination d; we have  

    (19) 

where I denotes the indicator function.  

 

B. Links and Schedules  

We allow broadcast transmission in our network 

model. In order to define a schedule, we first define 

two kinds of “links:” the point-to-point link and the 

broadcast link. A point-to-point link (nj) is a link that 

supports point-to-point transmission, where (nj) 2 L; 

A broadcast link (njlj) is a “link” which contains 

links (nl) and (nj) and supports broadcast 

transmission. Let B denote the set of all broadcast 

links, thus (njlj) 2 B: Let _ L be the union of the set 

of the point-to-point links L and the set of the 

broadcast links B; i.e., _ L = L [ B: We let �0 denote 

the set of links that can be activated simultaneously. 

By abusing notation, �0 can be thought of as a set of 

vectors where each vector is a list of 1’s or 0’s where 

a 1 corresponds to an active link and a 0 corresponds 

to an inactive link. Then, the capacity region of the 

network for 1- hop traffic is the convex hull of all 

schedules, i.e., _0 = co(�0): Thus,  

 

C. Queue Structure and Shadow Queue Algorithm 

Each node n maintains a set of counters, which 

are called shadow queues, plnd for each previous hop 

l and each destination d; and p0nd for external flows 

destined for d at node n: Each node n also maintains a 

real queue, denoted by qlnj; for each previous hop l 

and each next-hop neighbor j; and q0nj for external 
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flows with their next hop j: By solving the 

optimization problem with flow conservation 

constraints, we can work out the back-pressure 

algorithm for network coding case (see the brief 

description in Appendix B). More specifically, for 

each link (nj) 2 L in the network and for each 

destination d; define the back-pressure at every slot 

to be  

   (20) 

For each broadcast at node n to nodes j and l 

destined for d and d0; respectively, define the back-

pressure at every slot to be  

                (21) 

The weights associated with each point-to-point 

link (nj) 2 L and each broadcast link (njjl) are defined 

as follows  

       (22) 

The rate vector ~__[t] at each time slot is chosen 

to satisfy  

 
 

By running the shadow queue algorithm in 

network coding case, we get a set of activated links in 

_ L at each slot. Next we describe the evolution of 

the shadow queue lengths in the network. Notice that 

the shadow queues at each node n are distinguished 

by their previous hop l and their destination d; so 

plnd only accepts the packets from previous hop l 

with destination d: The similar rule should be 

followed when packets are drained from the shadow 

queue plnd: We assume the departures occur before 

arrivals at each slot, and the evolution of queues is 

given by  

 where ^_d kln[t] is the actual number of 

shadow packets scheduled over link (ln) and destined 

for d from the shadow queue pkld at slot t; 

^_d;d0ljnk[t] is the actual number of coded shadow 

packets transfered from node l to nodes n and k 

destined for nodes d and d0 at slot t; and ^af denotes 

the actual number of shadow packets from external 

flow f received at node n destined for d:  

 

D. Implementation Details 

The implementation details of the joint adaptive 

routing and coding algorithm are similar to the case 

with adaptive routing only, but the notation is more 

cumbersome. We briefly describe it here. 

1) Probabilistic Splitting Algorithm: The probabilistic 

splitting algorithm chooses the next hop of the packet 

based on the probabilistic routing table. Let Pdlnj[t] 

be the probability of choosing node j as the next hop 

once a packet destined for d receives at node n from 

previous hop l or from external flows, i.e., l = 0 at 

slot t: Assume that Pdlnj[t] = 0 if (nj) 62 L: 

Obviously, P j2N Pdlnj[t] = 1: Let _d lnj[t] denote the 

number of potential shadow packets “transferred” 

from node n to node j destined for d whose previous 

hop is l during time slot t: Notice that the packet 

comes from an external flow if l = 0: Also notice that 

_d lnj[t] is contributed by shadow traffic point-to-

point transmission as well as shadow traffic broadcast 

transmission, i.e.,  

 
We keep track of the the average value of _d lnj[t] 

across time by using the following updating process:  

      (24) 

where 0 _ _ _ 1: The splitting probability Pdlnj[t] is 

expressed as follows:  

                  (25) 

2) Token Bucket Algorithm: At each node n; for each 

previous-hop neighbor l; next-hop neighbor j and 

each  estination d; we maintain a token bucket rdlnj: 

At each time slot t; the token bucket is decremented 

by _d lnj[t]; but cannot go below the lower bound 0 :  

 
When rd 

1]  tokens (associated with bucket  d lnj) are 

“wasted” in slot t: Upon a packet arrival from 

previous hop l at node n for destination d at slot t; we 

find the token bucket rdlnj_ which has the smallest 

number of tokens (the minimization is over next-hop 

neighbors j), breaking ties arbitrarily, add the packet 
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to the corresponding real queue qlnj_ ; and add one 

token from the corresponding bucket:  

 
 

E. Extra link Activation 

Like the case without network coding, extra link 

activation can reduce delays significantly. As in the 

case without network coding, we add additional links 

to the schedule based on the queue lengths at each 

link. For extra link activation purposes, we only 

consider point-to-point links and not broadcast. Thus, 

we schedule additional point-to-point links by giving 

priority to those links with larger queue backlogs.  

 

VIII. SIMULATIONS 
We consider two types of networks in our 

simulations: wireline and wireless. Next, we describe 

the topologies and simulation parameters used in our 

simulations, and then present our simulation results.  

 

A. Simulation Settings 

1) Wireline Setting: The network shown in 

Figure 3 has 31 nodes and represents the GMPLS 

network topology of North America [1]. Each link is 

assume to be able to transmit 1 packets in each slot. 

We assume that the arrival process is a Poisson 

process with parameter _; and we consider the 

arrivals come within a slot are considered for service 

at the beginning of the next slot. Once a packet 

arrives from an external flow at a node n, the 

destination is decided by probability mass function ^ 

Pnd; d = 1; 2; :::N; where ^ Pnd is the probability that 

a packet is received externally at node n destined for 

d: Obviously, P d:d6=n ^ Pnd = 1; and ^ Pnn = 0: The 

probability ^ Pnd is calculated by   

 
whereJn denotes the number of neighbors of 

node n: Thus, we use ^ Pnd to split the incoming 

traffic to each  estination based on the degrees of the 

source and the destination.  

 
Fig. 3. Sprint GMPLS network topology of North 

America with 31 nodes.[1] 

2) Wireless Setting: We generated a random 

network with 30 nodes which resulted in the topology 

in Figure 4. We used the following procedure to 

generate the random network: 30 nodes are placed 

uniformly at random in a unit square; then starting 

with a zero transmission range, the transmission 

range was increased till the network was connected. 

We assume that each link can transmit one packet per 

time slot. We assume a 2-hop interference model in 

our simulations. By a k-hop interference model, we 

mean a wireless network where a link activation 

silences all other links which are k hops from the 

activated link. The packet arrival processes are 

generated using the same method as in the wireline 

case. We simulate two cases given the network 

topology: the no coding case and the network coding 

case. In both wireline and wireless simulations, we 

chose _ in (13) to be 0:02. 

 
Fig. 4. Wireless network topology with 30 nodes. 

 

B. Simulation Results 

1) Wireline Networks: First, we compare the 

performance of three algorithms: the traditional back-

pressure lgorithm, the basic shadow queue 

routing/scheduling algorithm without the extra link 

activation enhancement and PARN. Without extra 

link activation, to ensure that the real arrival rate at 

each link is less than the link capacity provided by 

the shadow algorithm, we choose " = 0:02: Figure 5 

shows delay as a function of the arrival rate lambda 

for the three algorithms. As can be seen from the 

figure, simply using a value of M > 0 does not help to 

reduce delays without extra link activation. The 

reason is that, while M > 0 encourages the use of 

shortest paths, links with back-pressure less than M 

will not be scheduled and thus can contribute to 

additional delays.  

Next, we study the impact of M on the 

performance on PARN.  
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Fig. 

5. The impact of the parameter M in Sprint GMPLS 

network topology 

 

Figure 6 shows the delay performance for 

various M with extra link activation in the wireline 

network. The delays  or different values of M (except 

M = 0) are almost the same in the light traffic region. 

Once M is sufficiently larger than zero, extra link 

activation seems to play a bigger role, than the choice 

of the value of M; in reducing the average delays. 

The wireline simulations show the usefulness of the 

PARN algorithm for adaptive routing. However, a 

wireline network does not capture the scheduling 

aspects inherent to wireless networks, which is 

studied next.  

 
Fig. 6. Packet delay as a function of _ under PARN in 

Sprint GMPLS network topology 

 

2) Wireless Networks: In the case of wireless 

networks, even with extra link activation, to ensure 

stability even when the arrival rates are within the 

capacity region, we need " > 0: We chose " = 0:1 in 

our simulations due to reasons mentioned in Section 

VI.  

In Figure 7, we study wireless networks without 

network coding. From the figure, we see that the 

delay performance is relatively insensitive to the 

choice of M as long as it is sufficiently greater than 

zero. The use of M ensures that unnecessary resource 

wastage does not occur, and thus, extra link 

activation can be used to decrease delays 

significantly. 

 
Fig. 7. Packet delay as a function of _ under PARN in 

the wireless network under 2-hop interference model 

without network coding 

 

In Figures 8 and 9, we show the corresponding 

results for the case where both adaptive routing and 

network coding are used. Comparing Figures 7 and 8, 

we see that, when used in conjunction with adaptive 

routing, network coding can increase the capacity 

region. We make the following observation regarding 

the case M = 0 in Figure 9: in this case, no attempt is 

made to optimize routing in the network. As a result, 

the delay performance is very bad compared to the 

cases with M > 0 (Figure 8). In other words, network 

coding alone does not increase capacity sufficiently 

to overcome the effects of back-pressure routing. On 

the other hand, PARN with M > 0 harnesses the 

power of network coding by selecting routes 

appropriately.  

Next, we make the following observation about 

network coding. Comparing Figures 8 and 9, we 

noticed that at moderate to high loads (but when the 

load is within the capacity region of the no coding 

case), network coding increases delays slightly. We 

believe that this is due to fact that packets are stored 

in multiple queues under network coding at each 

node: for each next-hop neighbour, a queue for each 

previous-hop neighbour must be maintained. This 

seems to result in slower convergence of the routing 

table. Finally, we study the performance of the 

probabilistic splitting algorithm versus the token 

bucket algorithm. In our simulations, the token 

bucket algorithm runs significantly faster, by a factor 

of 2: The reason is that many more calculations are 

needed for the probabilistic splitting algorithm as 

compared to the token bucket algorithm. This may 

have some implications for practice. So, in Figure 10, 

we compare the delay performance of the two 

algorithms. As can be seen from the figure, the token 

bucket and probabilistic splitting algorithms result in 

similar performance. Therefore, in practice, the token 

bucket algorithm may be preferable.  
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Fig. 8. Packet delay as a function of _ under PARN 

for M > 0 in the wireless network under 2-hop 

interference model with network coding 

 

 
Fig. 9. Packet delay as a function of _ under PARN 

for M = 0 in the wireless network under 2-hop 

interference model with network coding 

 

IX. CONCLUSION 
The back-pressure algorithm, while being 

throughputoptimal, is not useful in practice for 

adaptive routing since the delay performance can be 

really bad. In this paper, we have presented an 

algorithm that routes packets on shortest hops when 

possible, and decouples routing and scheduling using 

a probabilistic splitting algorithm built on the concept 

of shadow queues introduced in [6], [7]. By 

maintaining a probabilistic routing table that changes 

slowly over time, real packets do not have to explore 

long paths to improve throughput, this functionality 

is performed by the shadow “packets.” Our algorithm 

also allows extra link activation to reduce delays. The 

algorithm has also been shown to reduce the queuing 

complexity at each node and can be extended to 

optimally trade off between routing and network 

coding.  
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